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The Schrödinger-Debye System

The Cauchy problem for the Schrödinger-Debye system is:
i∂tu+ 1

2∆u = uv,

µ∂tv + v = λ|u|2,
u(x, 0) = u0(x), v(x, 0) = v0(x).

where, for n = 1, 2, 3

u : Rnx × Rt → C, v : Rnx × Rt → R,

and

µ > 0 λ = ±1.

The Schrödinger-Debye system models the propagation of an electomagnetic

wave in a non-resonant medium where the response time is relevant.
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The second equation, for the real function v(x, t)

µ∂tv + v = λ|u|2,

is just an ODE which can be easily solved

v(x, t) = e−t/µv0(x) + λ
µ

∫ t

0

e−(t−t′)/µ|u(x, t′)|2 dt′

decoupling the original system into just an integro-differential equation

i∂tu+ 1
2∆u = e−t/µv0u+ λ

µu

∫ t

0

e−(t−t′)/µ|u(t′)|2 dt′,

u(x, 0) = u0(x).
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The Cubic Nonlinear Schrödinger equation (cNLS)

In the case µ = 0 (absence of delay) the system reduces to the celebrated cubic

NLS equation

i∂tu+
1

2
∆u = ±|u|2u

where

u : Rnx × Rt → C,

and the equation is classified, depending on the sign of the nonlinearity, asFocusing: λ = −1

Defocusing: λ = +1
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Well posedness results for the cNLS equation

Recall that the scaling invariance for the cNLS is given by

uλ(x, t) = λu(λx, λ2t)

and therefore the scaling criticial Sobolev index is

sc =
n

2
− 1

• Local Well-posedness

– J. Ginibre, G. Velo [J. Funct. Anal., 1979] proved LWP for the

(subcritical) cases s = 1 and n = 1, 2, 3.

– Y. Tsutsumi [Funk. Ekva., 1987] proved LWP for the (subcritical) case

s = 0 and n = 1.
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• Local Well-posedness

– T. Cazenave, F. Weissler [Lecture Notes in Math, 1989] proved LWP

for the critical case s = 0 and n = 2.

– T. Cazenave, F. Weissler [Nonlinear Anal. T.M.A., 1990] proved LWP

for the fractional critical, and subcritical, exponents s ≥ max{0, sc},
for n ≥ 1.

• Global Well-posedness

– In the L2 subcritical case (n = 1) global existence is an immediate

consequence of the LWP result and the L2 conservation.

– In the defocusing (λ = +1) and H1 subcritical cases (n = 1, 2, 3)

global existence is an immediate consequence of the LWP result and

the energy conservation.

– In the critical cases L2 (n = 2) and H1/2 (n = 3) there is global

existence for small initial data.
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Blow-up results for the cNLS equation in H1

In the focusing (λ = −1) case

i∂tu+ 1
2∆u = −|u|2u

• The Gagliardo-Nirenberg inequality and the energy conservation guarantee

global existence for arbitrary H1 initial data only as long as the problem is

L2 subcritical (n=1).

• For the L2 critical case (n=2) the optimal constant in the

Gagliardo-Nirenberg inequality shows that if the L2 norm of the H1 initial

data is sufficiently small - smaller than the mass of the standing wave - the

H1 solution is global.

• For the L2 supercritical, H1 subcritical case (n=3) the solution is global

only if the H1 initial data is small.
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For the defocusing cNLS there is actually blow-up of the H1 solutions in the

L2 critical and supercritical regimes (n = 2, 3).

In these regimes the virial inequality is

d2

dt2

∫
|x|2|u(x, t)|2dx ≤ 8nE0

where E0 is the conserved energy of the cNLS

E0 =
1

2

∫
|∇u|2dx− 1

4

∫
|u|4dx.

Thus, by making ‖u0‖H1 large enough, one can always achieve E0 < 0 which

implies finite time blow up of the H1 solution.
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Conserved Quantities of the Schrödinger-Debye System

The solutions of the Schrödinger-Debye system satisfy conservation of the L2

norm∫
|u(x, t)|2dx =

∫
|u0(x)|2dx

and the pseudo-Hamiltonian structure

d

dt
E(t) = 2λµ

∫
RN

(vt)
2dx,

where

E(t) =

∫
RN

{
|∇u|2 + λ|u|4 − λµ2(vt)

2
}
dx =

∫
RN

{
|∇u|2 + 2v|u|2 − λv2

}
dx.
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Well-posedness for the Schrödinger-Debye System

n = 1, 2, 3

In 1998 and 2000, B. Bidégaray established the following local existence

results, using the Strichartz estimates for the unitary Schrödinger group applied

to the decoupled integro-differential equation

Theorem: Let n = 1, 2, 3 and (u0, v0) ∈ Hs(Rn)×Hs(Rn). Then, for small

enough T = T (‖u0‖Hs , ‖v0‖Hs), the initial value problem for the

Schrödinger-Debye system has a unique solution

(a) u ∈ L∞ ([0, T ];Hs(Rn)) if s > n/2,

(b) u ∈ L∞
(
[0, T ];H1(Rn)

)
if s = 1,

(c) u ∈ C
(
[0, T ];L2(Rn)

)⋂
L8/n

(
[0, T ];L4(Rn)

)
if s = 0.

Finally, if (u0, v0) ∈ H2(Rn)× L4(Rn), there also exists a unique solution

(u, v) ∈ C
(
[0, T ];H2(Rn)× L4(Rn)

)
.
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n = 1

In 2009, A. Corcho and C. Matheus established the following, in the framework

of Bourgain spaces

Theorem: For any (u0, v0) ∈ Hs(R)×H`(R), where

|s| − 1/2 ≤ ` < min{s+ 1/2, 2s+ 1/2} and s > −1/4,

there exists a time T = T (‖u0‖Hs , ‖v0‖H`) > 0 and a unique solution

(u(t), v(t)) of the initial value problem in the time interval [0, T ], satisfying

(u, v) ∈ C
(
[0, T ];Hs(R)×H`(R)

)
.

In addition, in the case ` = s with −3/14 < s ≤ 0, the local solutions can be

extended to any time interval [0, T ].
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n = 2, 3

Using Bourgain space techniques analogous to J. Ginibre, Y. Tsutsumi, G. Velo

[J. Funct. Anal. 1997], for the Zakharov system, we established the following

LWP result

Theorem: Let n = 2, 3. For any (u0, v0) ∈ Hs(Rn)×H`(Rn), with s and `

satisfying the conditions:

max{0, s− 1} ≤ ` ≤ min{2s, s+ 1}

there exists a positive time T = T (µ, ‖u0‖Hs , ‖v0‖H`) and a unique solution

(u(t), v(t)) of the initial value problem on the time interval [0, T ], such that

(u, v) ∈ C
(
[0, T ];Hs(Rn)×H`(Rn)

)
.

Obs: The cases Hs(Rn)×Hs(Rn), s ≥ 0 and Hs+1(Rn)×Hs(Rn), s ≥ 0

are included in this theorem.
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The idea of the proof consists, not in decoupling the system, but as usual in

writing it in integral form through Duhamel’s formula
u(t) = S(t)u0 − i

∫ t

0

S(t− t′)uv(t′) dt′

v(t) = e−t/µv0 + λ
µ

∫ t

0

e−(t−t′)/µ|u(t′)|2 dt′

where S(t) = eit∆/2 denotes the Schrödinger unitary propagator.

The solution to the system is obtained by applying a Picard iteration scheme to

this integral formulation, showing that it contracts to a fixed point in

appropriate Bourgain spaces with time exponents > 1/2.‖u‖Xs,b = ‖ < ξ >s< τ + 1
2 |ξ|

2 >b û(ξ, τ)‖L2
ξ,τ
,

‖v‖Hl,c = ‖ < ξ >l< τ >c v̂(ξ, τ)‖L2
ξ,τ
.
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The proof typically reduces to proving multilinear estimates for the nonlinear

terms.

For the previous LWP result this was obtained by establishing the following

bilinear inequalities.

‖uv‖Xs,−1/2+ . ‖u‖Xs,1/2+‖v‖Hl,1/2+ s ≥ 0, l ≥ max{0, s− 1}

and

‖uw̄‖Hl,−1/2+ . ‖u‖Xs,1/2+‖w‖Xs,1/2+ s ≥ 0, l ≤ min{2s, s+ 1}
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Global Well-posedness for the Critical Model

n = 2

Theorem: Let (u0, v0) ∈ H1(R2)×L2(R2). Then, for all T > 0, there exists a

unique solution

(u, v) ∈ C
(
[0, T ]; H1(R2)× L2(R2)

)
to the initial value problem associated to the Schrödinger-Debye system (both,

for the defocusing (λ = 1) as well as focusing (λ = −1) cases).
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The idea of the GWP proof is based on obtaining an a priori bound for the

quantity

f(t) := ‖∇u(·, t)‖2L2 + ‖v(·, t)‖2L2

which, together with the conservation of the L2 norm of u, yields control of

the full norm ‖u(·, t)‖H1 + ‖v(·, t)‖L2 .

Now, the term ‖v(·, t)‖2L2 is controlled by the explicit formula

v(x, t) = e−t/µv0(x) + λ
µ

∫ t

0

e−(t−t′)/µ|u(x, t′)|2 dt′

whereas the term ‖∇u(·, t)‖2L2 is controlled through∫
RN
|∇u|2dx = E(t)−

∫
RN

{
2v|u|2 − λv2

}
dx,
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The only particular ingredient is the use of the Gagliardo-Nirenberg inequality,

for n = 2,

‖u‖L4 ≤ CGN‖∇u‖1/2L2 ‖u‖1/2L2 .

For example, using the explicit formula for v(x, t)

‖v(·, t)‖L2 ≤ ‖v0‖L2 + 1
µ

∫ t

0

e−(t−t′)/µ‖u(·, t′)‖2L4 dt′

≤ ‖v0‖L2 +
C2
GN

µ

∫ t

0

‖u(·, t′)‖L2‖∇u(·, t′)‖L2 dt′

= ‖v0‖L2 +
C2
GN‖u0‖L2

µ

∫ t

0

‖∇u(·, t′)‖L2 dt′,

17



which, after squaring and using Hölder, becomes

‖v(·, t)‖2L2 ≤ 2‖v0‖2L2 + 2

(
C2
GN‖u0‖L2

µ

∫ t

0

‖∇u(·, t′)‖L2 dt′
)2

≤ 2‖v0‖2L2 +
2C4

GN‖u0‖2L2

µ2 t

∫ t

0

f(t′) dt′.

Then, this estimate of ‖v(·, t)‖L2 is used in the pseudo-Hamiltonian structure

equation for E(t), to finally produce the full a priori bound for f(t)

f(t) ≤ α0 + α1

∫ t

0

f(t′)dt′, for all t ∈
[
0, Tµ

]
where α0 = α0(‖u0‖L2 , ‖v0‖L2), α1 = α1(‖u0‖L2) are constants and

Tµ =
µ

4C4
GN‖u0‖2L2

depends only on the conserved quantity ‖u0‖L2 .
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Observations:

• The solution can grow very rapidly and explode at t=∞.

• In n = 2 the H1 norm barely fails to control L∞ therefore this does not

rule out blow up of ‖u‖L∞ .

• In n = 2 and initial data in H1 ×H1 the previous global result shows that

blow up can only occur for ‖∇v‖L2 .

• In n = 1 the previous proof can be easily modified to prove global

existence in H1 ×H1, for which the work of Corcho & Matheus already

provided LWP.
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That’s All Folks!

20


